Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Welch, Matthew (Ed.)Cell adhesion to the substrate influences a variety of cell behaviors and its proper regulation is essential for migration, although details of the molecular pathways regulating cell adhesion during migration are lacking. Rap1 is a small GTPase that regulates adhesion in mammalian cells, as well as in Dictyostelium discoideum social amoeba, which is an established model for studying directed cell migration. In Dictyostelium, Rap1 controls adhesion via its effects on adhesion mediator talin and Ser/Thr kinase Phg2, which inhibits myosin II function. Kinase responsive to stress B (KrsB), a homologue of mammalian tumor suppressor MST1/2 and Drosophila Hippo, also regulates cell adhesion and migration, although the molecular mechanism of KrsB action is not understood. Because KrsB has been shown to interact with active Rap1 by mass spectroscopy, we investigated the genetic interaction between Rap1 and KrsB. Cells lacking KrsB have increased adhesion to the substrate, which leads to reduced movement. Expression of constitutively active Rap1 G12V increased cell spreading and adhesion even in the absence of KrsB, suggesting that Rap1 does not require KrsB to mediate cell adhesion. In contrast, KrsB activation requires Rap1 since dominant-negative Rap1 S17N impaired KrsB phosphorylation, which has been previously shown to be necessary for KrsB activity and its function in adhesion. Even though Rap1 did not require KrsB for its function in adhesion, KrsB negatively regulates Rap1 function as seen by increased cortical localization of active Rap1 in KrsB-null cells. Consistently, Rap1 S17N completely reversed the overadhesive phenotype of KrsB-null cells. Furthermore, chemoattractant-induced activation of downstream effectors of Rap1, TalB and Phg2, was increased in the absence of KrsB. Taken together, these findings suggest that Rap1 leads to activation of KrsB, which inhibits Rap1 and its downstream targets, shutting off adhesion. The existence of a negative feedback loop between Rap1 and KrsB may contribute to the dynamic regulation of cell adhesion that is necessary for rapid amoeboid-type migration.more » « lessFree, publicly-accessible full text available April 1, 2026
-
Abstract While basaltic volcanism is dominant during rifting and continental breakup, felsic magmatism may be a significant component of some rift margins. During International Ocean Discovery Program (IODP) Expedition 396 on the continental margin of Norway, a graphite‐garnet‐cordierite bearing dacitic unit (the Mimir dacite) was recovered in two holes within early Eocene sediments on Mimir High (Site U1570), a marginal high on the Vøring Transform Margin. Here, we present a comprehensive textural, petrological, and geochemical study of the Mimir dacite in order to assess its origin and discuss the geodynamic implications. The major mineral phases (garnet, cordierite, quartz, plagioclase, alkali feldspar) are hosted in a fresh rhyolitic, vesicular, glassy matrix that is locally mingled with sediments. The major element chemistry of garnet and cordierite, the presence of zircon inclusions with inherited cores, and thermobarometric calculations all support an upper crustal metapelitic origin. While most magma‐rich margin models favor crustal anatexis in the lower crust, thermobarometric calculations performed here show that the Mimir dacite was produced at upper‐crustal depths (<5 kbar, 18 km depth) and high temperature (750–800°C) with up to 3 wt% water content. In situ U‐Pb analyses on zircon inclusions give a magmatic crystallization age of 54.6 ± 1.1 Ma, consistent with emplacement that post‐dates the Paleocene‐Eocene Thermal Maximum. Our results suggest that the opening of the Northeast Atlantic was associated with a phase of low‐pressure, high‐temperature crustal anatexis preceding the main phase of magmatism.more » « less
-
ABSTRACT We report on the first observation of a radio-quiet active galactic nucleus (AGN) in polarized X-rays: the Seyfert 1.9 galaxy MCG-05-23-16. This source was pointed at with the Imaging X-ray Polarimetry Explorer (IXPE) starting on 2022 May 14 for a net observing time of 486 ks, simultaneously with XMM-Newton (58 ks) and NuSTAR (83 ks). A polarization degree Π smaller than 4.7 per cent (at the 99 per cent confidence level) is derived in the 2–8 keV energy range, where emission is dominated by the primary component ascribed to the hot corona. The broad-band spectrum, inferred from a simultaneous fit to the IXPE, NuSTAR, and XMM-Newton data, is well reproduced by a power law with photon index Γ = 1.85 ± 0.01 and a high-energy cutoff EC = 120 ± 15 keV. A comparison with Monte Carlo simulations shows that a lamp-post and a conical geometry of the corona are consistent with the observed upper limit, a slab geometry is allowed only if the inclination angle of the system is less than 50°.more » « less
An official website of the United States government
